If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2=60
We move all terms to the left:
4.9x^2-(60)=0
a = 4.9; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·4.9·(-60)
Δ = 1176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1176}=\sqrt{196*6}=\sqrt{196}*\sqrt{6}=14\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{6}}{2*4.9}=\frac{0-14\sqrt{6}}{9.8} =-\frac{14\sqrt{6}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{6}}{2*4.9}=\frac{0+14\sqrt{6}}{9.8} =\frac{14\sqrt{6}}{9.8} $
| -6=4m+3+5m | | 7(10n+6)-7n=168 | | (x/12)+1=13 | | 4s=292 | | -3+5a=5a-3 | | X+y=65° | | 5k^2-10k-1=0 | | g+2=52 | | -16+8=-m-7(-6+7m) | | -x/3+5=13 | | 9x-11+80+57=180 | | X+4y=130° | | -2x-4(4x-8)=3(-8x-1) | | 8-10(2x-3)=28 | | 6x–(2x+4)=12 | | 41n+18=49n+43 | | u+11=95 | | -n+3.7=-8.4 | | 2x+13=5x-6x+22 | | 10=-16t^2+85t+4 | | -6(5n+1)=-4(8n-4)+6 | | 1250+70x=800+40x | | y+441=532 | | y+-441=532 | | 3-6x÷3=-11 | | w+15=15 | | -7(8r+4)+r=522 | | -3(+-4)6t-8=-2t+6 | | 4c+3-6c-c=1 | | 2(-x+2)=4(x-2) | | 896=14h | | S(x)=30(4.4)^x |